BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250429T013539EDT-4620HmvFEN@132.216.98.100 DTSTAMP:20250429T053539Z DESCRIPTION:La série Feindel Brain and Mind Seminar s’inscrit dans la ligne de pensée du Dr William Feindel (1918-2014)\, directeur du Neuro de 1972 à 1984\, qui consiste à maintenir un lien constant entre pratique clinique et recherche. Les présentations porteront sur les dernières avancées et d écouvertes en neuropsychologie\, en neurosciences cognitives et en neuro-i magerie. \n\nLes scientifiques du Neuro\, ainsi que des collègues et colla borateurs venus du milieu ou du monde entier\, se chargeront des conférenc es. Cette série se veut un forum virtuel pour les chercheurs et les stagia ires en vue de favoriser les échanges interdisciplinaires sur les mécanism es des troubles cérébraux et cognitifs\, leur diagnostic et leur traitemen t. \n\n\nPour participer en personne\, inscrivez-vous ici\n\nPour visionne r la diffusion sur Vimeo\, cliquez sur le lien suivant\n\n\nAnisleidy Gonz alez Mitjans\n\nChercheuse post-doctorale\, Centre d'imagerie cérébrale\, Université ´ó·¢²ÊƱƽ̨\, Le Neuro\n\nHôte: justine.clery [at] mcgill.ca (Justin e Clergy)\n\nAbstract: The Jansen and Rit Neural Mass Model (JR NMM) serve s as a concise yet potent framework for comprehending the dynamics within a cortical column and its interactions with the thalamus. While adept at s imulating diverse neural processes and applied in the exploration of pheno mena related to epileptic seizures and brain-computer interfaces\, the exi sting algorithms encounter challenges in scaling with an increasing number of neural masses. This limitation hampers real-time feedback and impedes the applicability of Neural Mass Models (NMMs) in resolving EEG/MEG invers e problems. To address these issues\, this study introduces a novel approa ch along with a Distributed-delay Neural Mass Model (DD-NMM) Toolbox\, gro unded in three pivotal aspects: i. Preservation of Network Dynamics: Lever aging the Local Linearization Method (LLM)\, numerical methods that may di srupt network properties (attractors) are circumvented. ii. Decoupling of Neural Mass Integration: Enhancing the simulation sampling frequency facil itates treating inputs to each neural mass as exogenous. This\, in turn\, streamlines the symbolic solution of the corresponding equations. iii. Eff icient Input Computation: Employing a differential algebraic formulation\, a tensor product is utilized between past outputs of all masses and the C onnectome Tensor (CT). This innovative approach creates the present input to each NMM\, allowing for the modeling of various connectivities and dela ys\, including distributed delays. Through these advancements\, this work aims to overcome the scaling challenges faced by current algorithms\, pavi ng the way for enhanced real-time feedback and the broader application of NMMs in tackling EEG/MEG inverse problems.\n DTSTART:20240304T180000Z DTEND:20240304T190000Z LOCATION:De Grandpre Communications Centre\, Montreal Neurological Institut e\, CA\, QC\, Montreal\, H3A 2B4\, 3801 rue University SUMMARY:Feindel Brain and Mind Seminar Series: High-Dimensional Neural Mass Models with Distributed-Delay Connectome Tensors URL:/neuro/fr/channels/event/feindel-brain-and-mind-se minar-series-high-dimensional-neural-mass-models-distributed-delay-354693 END:VEVENT END:VCALENDAR